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The local Kramers}Kronig (K}K) relations, which link the damping properties
of solid materials at one frequency to the rate of frequency variation of dynamic
modulus, are not exact. The validity and accuracy of the local K}K relations is
theoretically investigated in this paper by means of material models, especially the
fractional Zener model. It is shown that the local K}K relations qualitatively
always properly predict the relation between the damping and the frequency
dependence of dynamic modulus for any type of deformation and any linear
mechanism of energy loss determining the frequency variations. Nevertheless, the
accuracy depends on the rate of frequency variation of dynamic properties, mainly
of the loss modulus and loss factor, and the weaker the frequency dependence, the
better the accuracy. The accuracy is better than 10% if the slope of frequency
increase or decrease of loss functions plotted in a log}log system is smaller than
0)35. The application of the local K}K relations to some experimental data is
presented.
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1. INTRODUCTION

The Kramers}Kronig (K}K) relations have been known from the beginning of this
century from the works of Kramers and Kronig who developed them in the theory
of electromagnetic wave propagation, and showed that interrelation is between the
real and imaginary parts of the complex refraction index [1], and those of the
complex susceptibility [2]. After the derivations of Kramers and Kronig, it has
been proved that the relations are of general nature, because they are a direct
consequence of causality and linearity, which are the features of real linear physical
systems. The relations can therefore be used to connect the real and imaginary parts
of the relevant frequency response function of systems such as electrical, mechanical
and acoustical under certain conditions [3].

The K}K relations can be applied to the complex modulus of elasticity (or its
inverse, the complex compliance) [4}8], and are widely used to characterize the
linear dynamic properties, dynamic elasticity and damping, of solid materials in the
frequency range. The importance and practical usefulness of the relations applied to
0022-460X/99/501145#21 $30.00/0 ( 1999 Academic Press



1146 T. PRITZ
complex modulus is in the fact that they enable one to calculate one dynamic
property from the knowledge of the other property versus frequency. Therefore, the
K}K relations provide one with a powerful tool for both experimental and
theoretical investigations of the complex modulus. For example, the relations may
help one to "nd the proper frequency dependence even if there are large errors in
the measured values of one dynamic property, as is common in the case of damping,
provided that the experimental data for the other property (the dynamic modulus)
versus frequency are &&smooth'' enough. Notwithstanding, the practical use of the
K}K relations is rare [9] because of calculation di$culties. The relations are a pair
of integral equation, which in the mathematical context are known as Hilbert
transform, and the calculation of integrals is a problem, especially if the variations
of dynamic properties are not known for all frequencies from the measurement as is
the case usually.

Fortunately, the local versions of the K}K relations are known, which are
approximations of the general integral equations [6}8, 10, 11]. The local relations
relate the damping properties at one frequency to the rate of frequency variation of
dynamic modulus; they are simple and therefore overcome the shortcomings of the
integral equations. The disadvantage of the local relations is that they are not exact
due to the assumption made in their derivation, namely that the dynamic properties
are slowly varying functions of frequency [6, 7]. It is surprising that the accuracy of
the local K}K relations theoretically has not been investigated before and,
therefore, the limit of the validity has not been cleared in spite of their use in
complex modulus measurements [12}15], modelling viscoelastic behaviour [16,
p. 94] and in wave propagation studies [6, 17}22].

The essential aim of this paper is to investigate theoretically the validity and
accuracy of the local K}K relations with respect to the rate of frequency
dependences of dynamic properties. The investigation will be made by means of
material models, especially by one of the fractional derivative models, which is able
to represent the frequency dependence of dynamic properties of di!erent rates
(from linear increase down to the &&frequency independence'') adequately describing
the dynamic behaviour of real solid materials over a wide frequency range [23, 24].
Moreover, the local K}K relations will be applied to some experimental data to
demonstrate their applicability and support the results of the theoretical
investigation.

2. KRAMERS}KRONIG RELATIONS FOR COMPLEX MODULUS

2.1. GENERAL DEFINITION OF COMPLEX MODULUS

The most general relation between dynamic stress and strain in the linear range
of real solid material having both elasticity and damping properties can be given by
an integral equation of hereditary type [8], as

p (t)"P
t

~=

m (t!q)e(q) dq, (1)
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where p (t) and e(t) are the stress- and strain-time history, respectively, t is the time,
q is a dummy variable, m (t) is the memory function:

m(t)"
p
m
(t)

e
0

, (2)

in which p
m
(t) is the stress response of material to strain impulse excitation of

e
0

magnitude, i.e., e(t)"e
0

d (t), where d (t) is the Dirac delta function. Equation (1)
is the mathematical formulation of the Boltzmann superposition principle which is
a heuristic one and relies on the linearity. This equation is of general nature,
because it is independent of the type of deformation such as shear, compression,
etc., and the mechanism of damping, that is the material properties that are
involved in the memory function. Until now, equation (1) has been the basis of the
phenomenological theory of linear dynamic behaviour of solid materials referred
most frequently to as viscoelasticity or anelasticity or sometimes as hereditary
elasticity. Furthermore, this equation is formally identical to the fundamental
equation of linear systems [3, 8], if e (t) is the excitation, i.e., the input function, then
p(t) is the output function, the response.

Equation (1) de"nes the stress to strain ratio in the time domain, where the
acoustical or vibrational problems are di$cult to solve. One can determine
the general equation for the stress to strain ratio in the frequency domain by taking
the Fourier transform F of equation (1), provided that the Fourier transform for
p(t), e(t) and m(t) exist. The Fourier transform for m(t) can be written as

M1 ( ju)"Fm (t)"
1
2n P

=

~=

m(t) e!jut dt, (3)

where an overbar represents a complex valued function. Applying the
transformation rule to the convolution integral, the Fourier transform of equation
(1) results in [3]

p6 ( ju)"MM ( ju)e6 ( ju). (4)

This equation is the complete analogue of the time-domain one (1), therefore
equation (4) represents the constitutive law of solid materials in the frequency
domain. Furthermore, it is clear that equation (4) represents the Hooke's law
generalized for dynamic loading, in which the Fourier transforms of stress- and
strain-time histories are linked through a complex quantity M1 ( ju) referred to,
therefore, as complex modulus of elasticity, which is

M1 ( ju)"
p6 ( ju)
e6 ( ju)

"M
d
(u)#jM

l
(u)"M

d
(u)[1#jg(u)], (5)

where M may be any modulus of elasticity (shear, bulk, etc.), M
d

is the dynamic
modulus of elasticity, M

l
is the loss modulus, and g is the loss factor:

g(u)"
M

l
(u)

M
d
(u)

. (6)

Note that the complex modulus is usually de"ned for harmonic vibrations by the
ratio of complex amplitudes, which is a special case of the general de"nition given
above.
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2.2. EXACT KRAMERS}KRONIG RELATIONS

De"nition (5) implies that the complex modulus can be interpreted as the
frequency response function of a linear system which is the solid material itself. It is
known that the real and imaginary parts of the frequency response function of
a real physical linear system, under certain conditions, are interrelated [3]. The
relations are known as Kramers}Kronig dispersion relations, or shortly as
dispersion relations, after the names of the authors who developed them "rst in
theory of electromagnetic wave propagation [1, 2]. Later on it has been proved that
the relations are of general nature, because they rely on the basic physical principle
of causality besides linearity. For this reason, the K}K relations have found
application in many "elds of science such as electrical network theory,
electrodynamics, acoustic wave propagation, viscoelasticity, structural dynamics,
etc. The causality is the feature of real solid materials; therefore, the K}K relations
can be applied to connect the dynamic elastic and damping properties in the linear
range of material behaviour.

The relations between the real and imaginary parts of complex modulus, i.e., the
dynamic and loss moduli, can be derived from equation (1) by taking into account
the causality of memory function, namely m(t)"0 for t(0. Earlier Gross [4] and
Sermergor [5] made the derivation for the complex modulus using implicitly the
causality. Recently, O'Donell et al. [6] have derived the K}K relations for the
complex compressibility (reciprocal of the complex bulk modulus) directly
employing the causality principle. Furthermore, the K}K relations are derivable by
applying the Cauchy's integral formula for the complex modulus, which is
a complex frequency function [7, 8], and taking into account the consequencies of
causality formulated for the frequency domain [7]. As a result of derivations several
forms of the dispersion relations are known; here the formulae involving the static
modulus M

0
are given [8]:

M
d
(u)"M

0
#

2u2

n
P P

=

0

M
l
(y)/y

u2!y2
dy, (7)

M
l
(u)"!

2u
n

P P
=

0

M
d
(y)

u2!y2
dy, (8)

where y is an integration variable and P denotes the principal value of the integrals.
It is clear that in possession of K}K relations it is su$cient to know one dynamic

property-frequency function because the other property, in principle, can be
calculated. Nevertheless, the application of K}K relations is not frequent at all
because of the di$culties in calculating the integrals. On the one hand, the
analytical calculation can be made for some simple functions only. On the other
hand, the numerical calculations require, in principle, the knowledge of variations
of dynamic properties for all frequencies, but they are known in only a limited
frequency range of measurement. The numerical calculation can be performed in
the latter case too, but then truncation error may distort the results discussed by
Kennedy and Tomlinson [9].
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2.3. APPROXIMATE, LOCAL KRAMERS}KRONIG RELATIONS

The above problems can be avoided if one uses the simpli"ed, local versions of
the K}K relations. The local relations for the complex modulus can be derived from
the integral equation (8) by following the procedure described by O'Donell et al. [6]
for the complex compressibility, which results in

M
l
(u)+

n
2

u
dM

d
(u)

du
, (9a)

or

M
l
(u)+

n
4, 6

dM
d
(u)

d [logu]
(9b)

and

g(u)+
n
2

d[logM
d
(u)]

d[logu]
. (10)

These equations enable one to calculate the loss modulus or loss factor at one
frequency from the knowledge of the slope of dynamic modulus-frequency curve at
that frequency. Furthermore, by integrating these equations, the rate of frequency
variation, that is the dispersion of dynamic modulus in a frequency range, e.g., u

1
to

u
2
, can be calculated: namely,

M
d
(u

2
)!M

d
(u

1
)+

2
n P

u
2

u
1

M
l
(u)

u
du, (11a)

or

M
d
(u

2
)!M

d
(u

1
)+

4, 6
n P

u
2

u
1

M
l
(u)d logu (11b)

and

log
M

d
(u

2
)

M
d
(u

1
)
+

2
n P

u
2

u
1

g (u) d log u. (12)

Note that by means of the latter equations, one can calculate only the change of
dynamic modulus but not the value of modulus itself, in contrast to equations (9a),
(9b) and (10), which give the values of loss modulus and loss factor, respectively,
themselves. Note further that, although the derivation of the local K}K relations
from the general integral equations is relatively new [6], equations (9a), (9b) and
(10) have been known in the theory of viscoelasticity for quite a long time as a result
of time-domain investigations [10, 11]. Since then the local relations have been
referred to in a number of works devoted to viscoelasticity and have been used in
evaluating the results of complex modulus measurements [12}15] and in modelling
viscoelastic behaviour [16]. Moreover, the local K}K relations play important role
in wave propagation studies too [6, 17}22], because they have served as the basis
for deriving the local relations between attenuation and velocity dispersion of
acoustic waves propagating in unbounded media [6, 17].
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Nevertheless, one has to be cautious when using the local K}K relations for
calculations, because they are not exact. The essential reason for inaccuracy of the
relations is the assumption used in their derivation, namely that the dynamic
properties are slowly varying functions of frequency [6, 7]. The local K}K relations
were experimentally veri"ed by Booji and Thoone [7] for the complex shear
modulus of a polyvinylacetate sample in a wide frequency range (10~8}102 Hz),
and their investigation demonstrates that the inaccuracy increases with the increase
of slope of the loss property-frequency function. The experimental veri"cation has
not made it possible, of course, for Booji and Thoone to determine the accuracy of
the relations analytically. The same applies to the works of O'Donell et al. [6] and
Lee et al. [20] who also experimentally veri"ed the wave version of local K}K
relations in a narrow range of ultrasonic frequencies (approx. 0.5}10 MHz) for
polyethylene and polyurethane samples respectively. Note that there exist more
re"ned approximations of the general K}K relations [25], that are more accurate
than the above local relations, but are more complicated and, therefore, have not
found application.

Today it is quite well known that the dynamic behaviour of real solid materials
can be adequately described by fractional derivative models [23, 24]. Of these
models, the fractional Zener model is especially useful to describe frequency
variations of di!erent rates over a wide frequency range. The other advantage of the
model is that it satis"es the exact K}K relations. In what follows, this fractional
derivative model will be used to investigate the accuracy and validity of the local
K}K relations with respect to the rate of frequency variations of dynamic
properties. For the sake of completeness, the investigations will start using the
original Zener model representing the classical viscoelastic behaviour.

3. VERIFICATION OF LOCAL KRAMERS}KRONIG RELATIONS

3.1. VERIFICATION BY ZENER MODEL

The Zener model also known as a standard linear solid, or standard viscoelastic
body or standard anelastic body, is the simplest material model which is able to
describe, at least qualitatively, the basic characteristics of dynamic behaviour of
real solids, especially the polymeric materials. The model can be represented by two
springs and one viscous dashpot as shown in Figure 1. The p}e relation describing
the model behaviour is a di!erential equation introduced by Zener [26]:

p (t)#q
r

dp(t)
dt

"M
0
e(t)#M

=
q
r

de (t)
dt

, (13)

where q
r
is the relaxation time,

q
r
"

k
M

1

, (14)

and k is the dashpot viscosity, M
1

and M
0

are spring constants; furthermore

M
=
"M

0
#M

1
. (15)



Figure 1. The Zener model.
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The complex modulus of the Zener model is derived from equation (13):

M1 ( ju)"
M

0
#M

=
juq

r
1#juq

r

, (16)

from which one can easily determine the dynamic and loss moduli, which are given
here in normalized form for the sake of convenience of numerical investigation:

M
d
(u)

M
0

"

1#cu2
n

1#u2
n

, (17)

M
l
(u)

M
0

"

(c!1)u
n

1#u2
n

(18)

and

g(u)"
(c!1)u

n
1#cu2

n

, (19)

where u
n

is the normalized frequency, de"ned as

u
n
"uq

r
(20)

and

c"
M

=
M

0

. (21)

Figures 2(a) and 2(b) illustrate the variations of these functions in a log}log
system for c"10 and 103, respectively, in a frequency range covering 12 decades
(solid line). It can be seen that the dynamic modulus increases monotonically from
M

0
, which is the static modulus of elasticity, up to M

=
. The loss functions are zero

at zero frequency, and both approach zero at high frequencies after passing through
one maximum. The maximum in the loss modulus occurs at normalized frequency



Figure 2. Dynamic modulus, loss modulus and loss factor as functions of normalized frequency.
**, Calculated by the Zener model; } } }, loss properties calculated by the local K}K relations from
the dispersion of dynamic modulus.
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of u
n
"1"u

l
, and the maximum value M

m
normalized to M

0
is

M
m

M
0

"

c!1
2

. (22)

The frequency of maximum in the loss factor occurs below the maximum in the loss
modulus, and depends on c, namely,

ug"
1

Jc
)u

l
, (23)

and the maximum loss factor g
m

is

g
m
"

c!1

2Jc
. (24)
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Furthermore, it can be read from equations (18) and (19) that both loss functions
increase and decrease linearly and reciprocally with increasing frequency below
and above their maximum, respectively; thus the slope of frequency increase and
decrease is unity in a log}log system. This slope is independent of the loss peak,
and it is a direct consequence of the assumption of Zener model that the energy
dissipation can be attributed to the viscosity like #uids. In contrast to the loss
functions, the slope of frequency increase of dynamic modulus depends on the loss
maximum, i.e., the value of c. The slope of the log M

d
}logu function is the largest at

the in#ection point u
i
, which is

u
i
"

1

4Jc
"ug 4Jc*ug , (25)

therefore u
i
is between the loss peaks,

ug)u
i
)u

l
. (26)

These frequencies are marked in Figure 2(b) by way of example. The slope s
i
at u

i
is

s
i
"

d[logM
d
]

d[logu] Ku
i

"

2(c!1)Jc

(1#Jc) (c#Jc)
. (27)

This slope is evidently zero in the case of ideal elasticity (g
m
"0, c"1), and it can

be larger than unity; one has the largest slope if cPR, i.e., g
m
PR, then s

i
"2. In

our examples, s
i
"1)039 if c"10 (g

m
"1)423), and s

i
"1.877 if c"103

(g
m
"15.79).
It can be proved by either an analytical or numerical study that the frequency

functions (17) and (18) satisfy the exact K}K relations applied for complex
modulus. Therefore, the Zener model can be used to investigate the accuracy of the
approximate K}K relations. The investigation can be made by calculating either
the loss functions from the frequency dependence of dynamic modulus, or the
dispersion of dynamic modulus from the loss functions. Here the loss functions are
calculated, because it is the most frequently needed when one interprets the results
of measurement of complex modulus. The application of equation (9a) to equation
(17) results in

M@
l
(u)

M
0

"

n (c!1)u2
n

(1#u2
n
)2

(28)

and

g@(u)"
n (c!1)u2

n
(1#cu2

n
) (1#u2

n
)
, (29)

where the accent mark refers to the approximate values. The variations of these
functions are drawn in Figure 2 with dashed lines as a function of normalized
frequency for c"10 and 103 as before. It can be seen that although the
characteristics of the approximate and exact loss functions are the same, the values
are di!erent with the exception of two intersection points. The di!erence increases
away from the loss peaks, because the approximate loss functions increase and



1154 T. PRITZ
decrease by a function of u2 and 1/u2, respectively, instead of linear frequency
increase and reciprocal decrease characterizing the Zener model. Notwithstanding,
the frequencies of maxima in the exact and approximate loss moduli coincide but
the approximate maximum is larger by 57%, namely,

M@
m

M
0

"n
c!1

4
"

n
2

M
m

M
0

. (30)

On the contrary, the frequency of maximum in the approximate loss factor di!ers
from that of the exact one, and occurs at the in#ection point of dynamic modulus-
frequency curve in accordance with the prediction of equation (10):

u@g"u
i
*ug , (31)

and here

g@
m
"n

c!1

Jc

c

(1#Jc) (c#Jc)
"g

m

2nc

(1#Jc) (c#Jc)
. (32)

The di!erence between u@g and ug, moreover g@
m

and g
m
, can be especially large if c,

i.e., the loss is high, which is seen in Figure 2. For example, if c"103 then
g@
m
"2)949 and u@g"0)178 instead of g

m
"15)79 and ug"0)0316.

As a result of this simple numerical study and bearing in mind that the local K}K
relations have been derived under the assumption of slowly varying frequency
functions, it can be concluded that the linear frequency increase or reciprocal
decrease of loss functions, are too rapid variations for the local relations to yield
correct quantitative results. Nevertheless, the qualitative prediction of the local
K}K relations is proper even in this case.

3.2. VERIFICATION BY FRACTIONAL ZENER MODEL

It is known that the Zener model, in general is not capable of describing
qualitatively the dynamic behaviour of real solid materials. The manifestation of
inadequacy of the Zener model in the frequency domain is that the slopes of the
theoretical frequency curves plotted in a log}log system is always larger than those
of the experimental curves. The behaviour of this model can be improved by
decreasing the order of time derivatives in the p-e di!erential equation, i.e., by
introducing the so-called fractional derivatives [23]. Therefore, the resulting model,
named by the author as the fractional Zener model, has a p-e di!erential equation
which is

p (t)#qa
r

dap (t)
dta

"M
0
e(t)#M

=
qa
r

dae (t)
dta

, (33)

where 0(a(1, and the ath order time derivative of a function, say e(t), is de"ned
as [23]

da
dta

e (t)"
1

!(1!a)
d
dt P

t

0

e(q)
(t!q)a

dq, (34)
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in which ! is the gamma function. Note that this model is also known as the
four-parameter fractional derivative model after the number of parameters
(M

0
, M

=
, q

r
and a).

The complex modulus of the fractional Zener model is derived from equation (33)
by replacing the operator da/dta with ( ju)a [23]:

M1 ( ju)"
M

0
#M

=
( juq

r
)a

1#( juq
r
)a

. (35)

The dynamic and loss moduli are given again in normalized forms:

M
d
(u)

M
0

"

1#(c#1) cos(an/2)ua
n
#cu2a

n
1#2 cos(an/2)ua

n
#u2a

n

, (36)

M
l
(u)

M
0

"

(c!1) sin(an/2)ua
n

1#2 cos(an/2)ua
n
#u2a

n

, (37)

and

g(u)"
(c!1) sin(an/2)ua

n
1#(c#1) cos(an/2)ua

n
#cu2a

n

, (38)

where u
n

and c are de"ned as before by equations (20) and (21) respectively.
It can be seen that the introduction of fractional order time derivatives into the

p-e di!erential equation results in power functions with a power smaller than unity
in the complex modulus-frequency function. Hence, in this way, frequency
functions with slopes smaller the unity can be generated. By way of example the
frequency curves calculated with a"0)7 and 0)5 are drawn in Figures 3 and
4 respectively for c"10 and 103 in a frequency range used before (solid line). It can
be seen that the characters of frequency dependences of dynamic properties are the
same as those of the original Zener model, but the slopes of all frequency curves are
smaller; and the smaller the slopes, the smaller the a. Furthermore, it can be read
from Figures 3 and 4, and from equations (37) and (38) that the frequency increase
and decrease of the loss properties obey a power function of ua

n
and 1/ua

n
,

respectively, at frequencies far enough from the loss maxima. The maximum in the
loss modulus occurs at u

n
"1, and the maximum in the loss factor precedes it,

namely,

ug"
1

2aJc
. (39)

The maximum values of the loss functions are

M
m

M
0

"

c!1
2

sin(an/2)
1#cos(an/2)

(40)

and

g
m
"

c!1

2Jc

sin (an/2)

1#
c#1

2Jc
cos(an/2)

. (41)
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The last equation can be simpli"ed as

g
m
+tg(an/2), (42)

provided that

cAC
2

cos(an/2)D
2
, (43)

which is satis"ed, e.g., for c'100 if a(0)5. Furthermore, it can be read from
Figures 3 and 4 that the in#ection point of the dynamic modulus-frequency curve
lies somewhere between the loss peaks as in the original model. The slope of the
frequency increase of dynamic modulus at the in#ection point is, in general,
di!erent from that of the loss functions, and the slope increases with the increase of
c, i.e., the loss peak, and decreases with the decrease of a. The computer-generated
Figure 3. Dynamic modulus, loss modulus and loss factor as functions of normalized freuency.
**, Calculated by the fractional Zener model with a"0)7; } } }, loss properties calculated by the
local K}K relations from the dispersion of dynamic modulus.



Figure 4. Dynamic modulus, loss modulus and loss factor as functions of normalized frequency.
**, Calculated by the fractional Zener model with a"0)5; } } }, loss properties calculated by the
local K}K relations from the dispersion of dynamic modulus.
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curves show that the slopes of increase of dynamic modulus and loss properties are
almost identical in the cases when c'103 a(0)5 (see Figure 4(b)).

It can be proved by a numerical study using the Hilbert transform program of
Matlab that the fractional Zener model obeys the exact K}K relations.
Furthermore, from the foregoing, it is clear that this model enables one to generate
frequency functions of di!erent slope, from linear increase down to the &&frequency
independence'', by choosing a proper value for a. Therefore, the fractional Zener
model provides one with an excellent tool to investigate the accuracy of the
local K}K relations with respect to the rate of frequency variations of dynamic
properties.

The investigation was performed again by calculating the loss functions from the
dynamic modulus-frequency function by means of equations (9) and (10). All
calculations were made only numerically in this case to avoid the cumbersome
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analytic derivations. The parameters of a"0)9, 0)8,2 , 0)1, and c"10, 102 and
103 were used for the numerical investigation. The frequency curves calculated with
a"0)7 and 0)5 for c"10 and 103, are shown in Figures 3 and 4, respectively, by
way of example (dashed line). It can be seen that although the characteristics of the
approximate loss functions are in accordance with those of the exact functions, the
values are di!erent. The smaller the a, that is the rate of frequency dependences of
dynamic properties, the smaller the di!erence, i.e. the better the accuracy of the
local K}K relations. The inaccuracy is unacceptable if a'0)7; considerable
improvement starts from a"0)5, and no di!erence can be seen between the exact
and approximate frequency curves if a(0)3.

3.3. ESTIMATION OF ACCURACY

It can be seen on the frequency curves of Figures 3 and 4 that the di!erence
between the exact and approximate loss functions is the largest far-o! from their
maxima. Therefore, the accuracy of the local K}K relations can be estimated by
calculating the di!erence between the loss functions at these frequencies. The
calculation can be simpli"ed if one recognizes that the increase and decrease of the
approximate loss functions, under certain conditions, obey frequency functions of
about the same type as that of the exact ones. This statement can be proved by
approximating equations (36)}(38), e.g., for low frequencies which are far-o! from
the loss peak. If one assumes that ua

n
@1 and cA1, then the above equations can be

replaced with

M
d
(u)

M
0

+1#c cos(an/2)ua
n
, (44)

M
l
(u)

M
0

+c sin(an/2)ua
n
, (45)

and

g(u)+
c sin(an/2)ua

n
1#c cos(an/2)ua

n

. (46)

The application of local K}K relation (9a) to equation (44) results in

M@
l
(u)+c(an/2) cos(an/2)ua

n
(47)

and

g@(u)+
c(an/2) cos(an/2)ua

n
1#c ) cos(an/2)ua

n

. (48)

The comparison of equations (47) and (48) with equations (45) and (46), respectively,
proves the above statement.

The accuracy of the local K}K relations is characterized by the ratio of the
approximate and exact loss functions, namely,

M@
l
(u)

M
l
(u)

"

g@ (u)
g(u)

"

an/2
tg(an/2)

"g(a). (49)



LOCAL KRAMERS}KRONIG RELATIONS 1159
The variation of g (a) is plotted in Figure 5. It can be read from this "gure that the
di!erence between the exact and approximate values of loss functions is smaller
than 10% if a(0)35.

Note that the computer-generated curves indicate that the inaccuracy of the local
K}K relations is due rather to the frequency variations of loss property than to that
of dynamic modulus. In order to verify this observation, frequency curves have
been calculated with the assumption of low loss when the frequency dependence of
dynamic modulus is negligible (c+1). The exact and approximate loss functions
calculated with g

m
"0)01 for a"1)0 (c"1)021) and a"0)5 (c"1)049) are shown

in Figure 6 by way of example. One can see by comparing Figure 6 with Figures
3 and 4 that the di!erences between the exact and approximate loss functions are
about the same regardless of the rate of frequency variations of dynamic modulus,
and this supports the above observation. Furthermore, the comparison of
these "gures disproves a belief frequently referred to in the literature that low loss
is required for the validity and accuracy of local K}K relationships besides the
slow frequency variations. In all the "gures, with the exception of Figure 6, the
loss is rather high than low, g

m
is around 1)0, and the local K}K relations

yield accurate results if the frequency variations of dynamic properties is slow
enough.

Note further that the numerical study does not support the prediction of
equation (10) that the loss factor peak should occur at the in#ection point of the
dynamic modulus-frequency curve plotted in a log}log system. In contrast to it, all
Figure 5. Functions g (a) and h (a) characterizing the accuracy of local K}K relations as functions of
a remote from and around the loss factor peak respectively.



Figure 6. Loss modulus and loss factor as functions of normalized frequency.**, Calculated by
the Zener model (a"1) and the fractional Zener model (a"0)5) with the assumption of g

m
"0)01;

} } }, calculated by the local K}K relations from the dispersion of dynamic modulus.
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theoretical frequency curves show that the loss factor peak occurs below the
in#ection point, somewhere in the proximity of the lower elbow of the logM

d
}logu

curve. Notwithstanding, it can be seen on the theoretical frequency curves of
Figures 3 and 4 that the inaccuracy of loss factor calculated by the local K}K
relation is smaller at and around the loss peak than it is at other frequencies. It can
easily be proved if one assumes that a(0)5 and c'103, when equation (42) holds
true and the slope of increase of logM

d
}logu curve at the in#ection point

approximately equals to tg a, as mentioned before; therefore

g@
m
+

n
2

d[logM
d
]

d[logu]
+

n
2

tga. (50)

The ratio of equation (50) to equation (42) results in

g@
m

g
m

+

tga (n/2)
tg(an/2)

"h(a). (51)

The comparison of the values of h (a) given in Figure 5, with the values of g (a),
supports the above observation. Furthermore, the fact that the inaccuracy is
the smallest at and around the loss factor peak, where its frequency variation is the
slowest, supports the primary role of frequency variation of loss properties in the
accuracy of local K}K relations, as mentioned before.

As a result of this investigation it can be concluded that the accuracy of the local
K}K relations applied for the complex modulus is better than 10% at any
frequency if the slope of increase or decrease of loss properties}frequency functions
plotted in a log}log system is smaller than 0)35. Note that one would arrive at the
same conclusion by calculating the dispersion of dynamic modulus from the
knowledge of loss properties.
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4. APPLICATION TO EXPERIMENTAL DATA

In order to support the conclusions of the theoretical investigation presented
above, the local K}K relations have been applied to some experimental data. These
data are the dynamic Young's modulus E

d
, the relevant loss modulus E

l
and the loss

factor g
E

of a "lled rubber (1215 kg/m3), a polyethylene foam (40 kg/m3) and
a dense PVC foam (450 kg/m3), which are used for vibration control. The dynamic
properties have been measured in the audio frequency range by methods described
in references [27] (rubber), [28] (PVC foam) and [29] (polyethylene foam). The
measured values of dynamic Young's modulus, loss modulus and loss factor are
given in Figures 7}9. Moreover, the frequency dependence of dynamic Young's
modulus determined by a curve-"tting method (solid line), and the loss properties
calculated by the local K}K relations from the dispersion of dynamic modulus
(dashed lines) are given in the "gures.

The experimental data for the rubber and the polyethylene foam suggest that the
dynamic behaviour of these materials obey frequency functions of the type
(44)}(46); therefore these equations have been used to "nd the value of a and the
frequency dependence of dynamic modulus. It can be seen in Figure 7 that the loss
properties of the rubber calculated by the local K}K relations from the dispersion
of dynamic modulus with a"0)495, are underestimated. The inaccuracy is about
20%, which, according to the theoretical predictions, can be explained by the slope
of frequency increase of 0)495 of loss properties. In contrast to the rubber, the
values of loss modulus and loss factor of the polyethylene foam calculated by the
local K}K relations, agree quite well with the measured data due to the slow
frequency variation of loss properties (a"0)199). This is in good accordance again
with the theoretical prediction.
Figure 7. Dynamic Young's modulus, loss modulus and loss factor of a rubber (1215 kg/m3) plotted
against frequency at 253C. o, Measured values; **, dynamic modulus determined by curve-"tting
method; } } }, loss properties calculated by the local K}K relations from the dispersion of dynamic
modulus.



Figure 8. Dynamic Young's modulus, loss modulus and loss factor of a polyethylene foam
(40 kg/m3) plotted against frequency at 243C. o, Measured values;**, dynamic modulus determined
by curve-"tting method; } } }, loss properties calculated by the local K}K relations from the
dispersion of dynamic modulus.

Figure 9. Dynamic Young's modulus, loss modulus and loss factor of a PVC foam (450 kg/m3)
plotted against frequency at 243C. o, Measured values;**, dynamic modulus determined by curve-
"tting method; } } }, loss properties calculated by the local K}K relations from the dispersion of
dynamic modulus.
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The loss factor of the PVC foam, in contrast to the above materials, has its
maximum value (g

m
+0)53) in the frequency range of measurements. It has been

proved in an earlier work [24] that the dynamic behaviour of this PVC foam can be
described by means of the fractional Zener model over wide frequency range with
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a"0)335. Furthermore, one can see in Figure 9 that the maximum in the loss factor
is #at, and the slopes of frequency increase of dynamic and loss moduli are about
identical at these frequencies, like the model behaviour illustrated in Figure 4(b).
The maximum value of the loss factor has been calculated with this slope by
equation (50), resulting in g@

m
+0)54, which agrees very well with the measured

values. This agreement supports the theoretical conclusion that the accuracy of
local K}K relations is the best at and around the loss peak.

5. CONCLUSIONS

The local K}K relations applied to the complex modulus can be used to calculate
the loss modulus and loss factor at one frequency from the rate of frequency
variations of dynamic modulus, as can the reverse. The local relations are
approximations of the exact K}K integral equations; therefore, they are not
accurate. The validity and accuracy of the local K}K relations theoretically has
been investigated in this paper with respect to the rate of frequency variations of
dynamic properties. As a result of investigation performed by means of the Zener
model and the fractional Zener model, the following conclusions can be drawn.

(a) The local K}K relations qualitatively always properly predict the relation
between the loss properties and the frequency dependence of dynamic modulus for
any type of deformation and any linear mechanism of damping which can be
described by a complex modulus. The basic prediction of the relations is that the
larger the loss, the larger the frequency increase of dynamic modulus.

(b) The accuracy of the local K}K relations primarily depends on the rate of
frequency variation of loss functions; the weaker the frequency variation, the better
the accuracy.

(c) The accuracy of the local K}K relations is better than 10% if the slope of
freuency increase or decrease of loss functions plotted in a log}log system is smaller
than 0)35.

The practical usefulness of the local K}K relations is in that they may help one to
interpret, at least qualitatively, the results of measurements of complex moduli for
any material regardless of the rate of frequency dependences. One of the important
predictions of the local K}K relations is that all dynamic moduli (shear, Young's,
etc.) of real materials must increase with increasing frequency. If the frequency
dependence measured for a dynamic modulus is weak, then the relevant loss factor
is low, otherwise the loss is high and vice versa. Furthermore, if the slope of the
dynamic modulus-freuency curve plotted in a log}log system increases or decreases,
then the loss factor must increase and decrease, respectively, and it pass through
a maximum in the proximity of the in#ection point of the log M

d
}logu curve.

The local K}K relations can be used for evaluating the measured data of
complex modulus quantitatively too, provided that the rate of frequency
dependences of loss properties satisfy the requirements formulated in (c). Such weak
freuency dependences are characteristic of the complex moduli of sti! structural
materials (e.g., concrete, wood, etc.), rigid plastics, composites and some plastic
foams. On the contrary, the complex moduli of lossy rubbers and polymeric
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damping materials exhibit strong frequency dependences, when the calculation
with the local K}K relations may lead to very inaccurate results.

Note "nally that the conclusions drawn here have important consequences for
the accuracy of wave version of the local K}K relations applied for lossy, therefore
strongly dispersive media, which requires further investigations.
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